Presynaptic localization of Kv1.4-containing A-type potassium channels near excitatory synapses in the hippocampus.
نویسندگان
چکیده
Mammalian Shaker voltage-gated potassium channels that contain the Kv1.4 subunit exhibit rapid activation and prominent inactivation processes, which enable these channels to integrate brief (approximiately milliseconds) depolarizations over time intervals of up to tens of seconds. In the hippocampus, Kv1.4 immunoreactivity is detected at greatest density in two regions: (1) the middle molecular layer (MML), where perforant path axons synapse with dentate granule cells, and (2) the stratum lucidum (SL) of CA3, where the mossy fibers travel in tight fasciculi and form en passante synapses onto CA3 pyramidal cells. We have studied the localization of Kv1.4 within these regions in detail. First, we compared the distribution of Kv1.4 and synaptophysin (a synaptic vesicle protein primarily localized near termini) under confocal immunofluorescence microscopy. In the MML, Kv1.4 and synaptophysin immunofluorescence appeared to overlap. In the SL, however, Kv1.4 and synaptophysin staining was detected in nonoverlapping, irregular patches ( approximately 5-10 micro m in diameter). Ultrastructural studies of these two regions revealed that Kv1.4 immunoreactivity was absent from the surface membranes of cell bodies and dendrites and occurred prominently on axons, including axonal "necks" near termini. Small excitatory synaptic boutons also were labeled in the MML; by contrast, the mossy fiber synaptic expansions in the SL were not stained. These localizations may enable Kv1.4-containing channels to regulate the process of neurotransmitter release at these excitatory synapses.
منابع مشابه
Memory and long-term potentiation (LTP) dissociated: normal spatial memory despite CA1 LTP elimination with Kv1.4 antisense.
Long-term potentiation (LTP) in the hippocampal slice preparation has been proposed as an in vitro model for long-term memory. However, correlation of LTP with memory in living animals has been difficult to demonstrate. Furthermore, in the last few years evidence has accumulated that dissociate the two. Because potassium channels might determine the weight of synapses in networks, we studied th...
متن کاملThe Epilepsy-Linked Lgi1 Protein Assembles into Presynaptic Kv1 Channels and Inhibits Inactivation by Kvβ1
The voltage-gated potassium (Kv) channel subunit Kv1.1 is a major constituent of presynaptic A-type channels that modulate synaptic transmission in CNS neurons. Here, we show that Kv1.1-containing channels are complexed with Lgi1, the functionally unassigned product of the leucine-rich glioma inactivated gene 1 (LGI1), which is causative for an autosomal dominant form of lateral temporal lobe e...
متن کاملRequirement of N-terminal cysteines of PSD-95 for PSD-95 multimerization and ternary complex formation, but not for binding to potassium channel Kv1.4.
The PSD-95 family of PSD-95/Discs large/ZO-1 (PDZ) domain-containing proteins plays a role in the clustering and localization of specific ion channels and receptors at synapses. Previous studies have shown that PSD-95 forms multimers through an N-terminal region (termed the N-segment) and that the multimerization of PSD-95 is critical for its ability to cluster Shaker-type potassium channel Kv1...
متن کاملSomatostatin inhibits excitatory transmission at rat hippocampal synapses via presynaptic receptors.
Somatostatin is one of the major peptides in interneurons of the hippocampus. It is believed to play a role in memory formation and to reduce the susceptibility of the hippocampus to seizure-like activity. However, at the cellular level, the actions of somatostatin on hippocampal neurons are still controversial, ranging from inhibition to excitation. In the present study, we measured autaptic c...
متن کاملInternalization of the Kv1.4 potassium channel is suppressed by clustering interactions with PSD-95.
The contribution of voltage-dependent ion channels to nerve function depends upon their cell-surface distributions. Nevertheless, the mechanisms underlying channel localization are poorly understood. Two phenomena appear particularly important: the clustering of channels by membrane-associated guanylate kinases (MAGUKs), such as PSD-95, and the regional stabilization of cell-surface proteins by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 3 شماره
صفحات -
تاریخ انتشار 1998